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Abstract

A detailed study is made of the effects of vari-
ations in lamination and material parameters of

thin-walled composite frames on their vibrational
characteristics. The structures considered are semi-

circular thin-walled frames with I and J sections.

The flanges and webs of the frames are modeled

by using two-dimensional shell and plate finite ele-
ments. A mixed formulation is used with the fun-

damental unknowns consisting of both the general-

ized displacements and stress resultants in the frame.

The frequencies and modes predicted by the two-

dimensional finite-element model are compared with

those obtained from experiments, as well as with the

predictions of a one-dimensional, thin-walled-beam,
finite-element model. A detailed study is made of

the sensitivity of the vibrational response to varia-
tions in the fiber orientation, material properties of

the individual layers, and boundary conditions.

Introduction

The physical understanding and the numerical
simulation of the dynamic response of laminated

anisotropic structures have recently become the fo-

cns of intense efforts because of the expanded use

of fibrous composites in the aerospace, automotive,

shipbuilding, and other industries, and because of

the need to establish the practical limits of the dy-

namic load-carrying capability of structures made
from these materials. Experimental studies have

been conducted on the free vibration and impact re-

sponse of thin-walled composite frames and stiffeners

(e.g., see Boitnott et al. 1987; Boitnott and Fasanella
1989; Collins and Johnson 1989; and Chandra, Ngo,

and Chopra 1988). One-dimensional theories have

been developed for the static, vibration, and buckling

analyses of thin-walled-frame structures (e.g., Vlasov
1961; G]elsvik 1981; Nowinski 1966; and Panovko

and Beilin 1969). However, no systematic assessment
has been made of the range of validity of the basic

assumptions of these theories. Approximate analyt-

ical and numerical techniques have been applied to

the study of the vibrational response of tsotropic and

composite stiffeners (e.g., see Hasan and Barr 1974;

Vermisyan and Galin 1972; Rao 1975; Vasilenko and
Trivailo 1980; Narayanan, Verma, and Mallik 1981;

Ali 1984; Gupta, Venkatesh, and Rao 1985; Potiron

et al. 1985; Rfickschloss 1985; Wekezer 1987; Reh-

field, Atilgan, and Hodges 1990; Stemple and Lee

1988; and Bishop, Cannon, and Miao 1989). Few

publications exist in which the effects of variations

in lamination and geometric parameters of composite

panels on their vibrational characteristics are studied

(see Teh and Huang 1980 and Bank and Kao 1989).

However, none of these publications consider thin-

walled composite frames.

The present study is an attempt to fill this void.

Specifically, the objective of this paper is to sum-
marize the results of a recent study on the effects

of variations in the lamination and of geometric pa-

rameters of thin-walled composite frames on their

vibrational characteristics (frequencies, and energy
components associated with different modes). The

frames considered are semicircular, are made of thin-

walled graphite-epoxy material with I and J sections,
and have a 36-in. radius (see fig. 1).

Symbols

A cross-sectional area of one-

dimensional-beam model

Ay, Az

All

A33

effective shear areas for one-

dimensional-beam model in y-

and z-directions, respectively

extensional stiffness of laminate

(flanges or web) in xl-direction

in-plane shear stiffness of
laminate

bimoment in one-dimensional-

beam model

b, bl, b2,

b3, b4

c4

d, dl , d2

E,G

flange (or skin) dimensions (see

tables 2 and 3)

multipliers (see eqs. (5) and (7))

web dimensions (see tables 2

and 3)

effective Young's and shear

moduli of equivalent isotropic
material

EL,ET

IF]

elastic moduli of individual layers

of laminate (flanges or web) in
direction of fibers and normal to

it, respectively

matrix of linear flexibility coeffi-
cients for an individual element

GLT, GTT

(H}

h

hl, h2, h3,

h4, h5, h6,

h7

shear moduli in plane of fibers
and normal to it, respectively

vector of stress resultant (or

internal force) parameters

total thickness of laminate

wall thicknesses (see tables 2

and 3)



J

K

[k]

M1, M2,

M12,M21

[M],

N1,N2, N12

NL

[P],[Q]

Qy, Qz

0,1,0,2

R

R1

IS]

U c

ut:,vw ,ub:

second moments of cross section

(moments and product of inertia)
of one-dimensional-beam model

principal second sectorial mo-
ment of cross section of one-

dimensional-beam model

Salnt-Venant torsion constant of
cross section of one-dimensional-

beam model

kinetic energy

generalized stiffness matrix for an

individual element (see eqs. (3))

length of individual finite element

bending and twisting moments in
one-dimensional-beam model

bending stress resultants in two-
dimensional model

consistent and generalized
mass matrices for an individual

element (see eqs. (3))

extensional stress resultants in

two-dimensional model

total number of layers

axial force in one-dimensional-

beam model

matrices associated with con-

straint condition and regulariza-
tion term in the functional for

one-dimensional-beam model

transverse shear forces in one-

dimensional-beam model

transverse shear stress resultants

in two=dimensional model

radius of curvature of center-

line of frame (used in one-

dimensional-beam model)

outer radius of curvature of frame

(see fig. 1)

strain-displacement matrix for
individual element

total complementary strain
energy of frame

contributions of top flange, web,

and bottom flange (including

skin) to total complementary
strain energy

u ,½

u3

U, V, W

U 0, 730_ W 0

U 1 , U2, W

I I t
U 1 , U2, W

{x}

x, y, z

Xl, X2, X3

! I l
Xl, X2, x 3

{z}

"Txy, 'Tz z ,
0 0

"7_y, "Txz

C

Ex

c0

complementary strain-energy

components associated with in-

plane and out-of-plane forces,

respectively

complementary strain-energy
component associated with forces

neglected in one-dimensional-
beam model

displacement components in
coordinate directions for one-
dimensional-beam model

axial and transverse displace-
ments of one-dimensional-beam

model aty=z=0

displacement components of two-

dimensional model in Xl, x2, x3
coordinate directions

displacement components of two-

dimensional model in x_, x_, x_
coordinate directions

vector of nodal displacements

centroidal orthogonal coordinate

system used for one-dimensional-
beam model

local orthogonal coordinate

system used in conjunction with

two-dimensional model (for the

web and each of the two flanges)

global Cartesian coordinates used
for two-dimensional model

vector of element degrees of
freedom

particular solution (see eqs. (5)

and (7))

transverse shear strains in

one-dimensional-beam model (see

eqs. (A2))

penalty parameter

extensional strain in one-

dimensional-beam model

extensional strain of centerline of

one-dimensional-beam model

angle that a typical cross section

of frame makes with X_l, x2/plane



0 _0 _0/_y,

),i

lILT

O"x , O'xy, ¢7XZ

7r, 7rHR

_i _ I /¢2,¢3

O3

0

1D

2D

Subscript:

s

Superscript:

t

rate of twist of one-dimensional-

beam model

curvature changes and twist of
one-dimensional-beam model

vector of Lagrange multiplier

parameters

Lagrange multiplier

lamination and material

parameters

major Poisson's ratio of

individual layers

normal and shearing stresses on
cross section of beam

functionals defined in equa-

tions (A7) and (AS)

mass density of material

rotation components of two-
dimensional model referred to

local coordinate system Xl, x2

rotation components of two-
dimensional model referred

to global coordinate system
[ [ !

Xl, X2, X3

rotation components in one-
dimensional-beam model

strain parameter in one-
dimensional-beam model

frequency of vibration

sectorial coordinate (warping of
cross section for a unit rate of

twist)

- d/dx

one-dimensional-beam model

two-dimensional model

shear center

matrix transposition

Analysis

Computational Models

Two computational models are used for the thin-

walled composite frames considered in the present

study. In the first model, the flanges and web are
modeled by using two-dimensional shell and plate
finite elements. The second model is a finite-element

discretization of the one-dimensional Vlasov type

thin-walled-beam theory. Herein, the two models

are referred to as two-dimensional (2D) and one-

dimensional (1D) finite-element models, respectively.

Mathematical Formulation

Two-dimensional models. The analytical for-

mulation for the two-dimensional models is based

on the Sanders-Budiansky shell theory with the ef-
fects of transverse shear deformation, and laminated

anisotropic material response included. A mixed
formulation is used in which the fundamental un-

knowns consist of the generalized displacements and

the stress resultants in the frame. (See fig. 2 for the

sign convention.)
Bicubic shape functions are used to approximate

each of the generalized displacements and stress re-

sultants. There are 16 displacement nodes and 128

stress-resultant parameters in each element. The
stress resultants are allowed to be discontinuous at
interelement boundaries. The element characteristic

arrays are obtained by using the two-field, Hellinger-

Reissner, mixed-variational principle.

One-dimensional models. The analytical for-
mulation for one-dimensional models is based on a

form of the Vlasov thin-walled-beam theory with the

effects of flexural-torsional coupling, transverse shear

deformation, and rotary inertia included. The fun-
damental unknowns consist of seven internal forces

and seven generalized displacements of the beam (see

fig. 3 for the sign convention). The element char-

acteristic arrays are obtained by using a modified

form of the Hellinger-Reissner mixed variational prin-

ciple. The modification consists of augmenting the
functional of that principle by two terms: (1) the

Lagrange multiplier associated with the constraint
condition relating the rotation of the cross section

and the twist degrees of freedom, and (2) a reg-
ularization term that is quadratic in the Lagrange

multiplier. Only C ° continuity is required for the

generalized displacements. Lagrangian interpolation
functions are used for approximating each of the gen-

eralized displacements, internal forces, and Lagrange
multiplier. The polynomial functions for the inter-

nal forces and the Lagrange multiplier are one degree

lower than those of the generalized displacements. In

the present study, quadratic polynomials are used in

approximating the generalized displacements. Linear

polynomials are used in approximating each of the

internal forces and the Lagrange multiplier. The in-

ternal forces and the Lagrange multiplier are allowed

3



to bediscontinuousat interelementboundaries.For
eachelement,the total numberof generalizeddis-
placementparametersis 21,the total numberof in-
ternalforceparametersis14,andthetotalnumberof
Lagrangemultiplierparametersis 2. Thefundamen-
tal equationsof thethin-walled-beamtheoryusedin
thepresentstudyaregiveninNoor,Peters,andMin
(1989)andaresummarizedin theappendix.

Forquasi-isotropiclaminatedcomposites,numer-
ical experimentsto bedescribedsubsequentlyhave
demonstratedthat reasonablyaccurateresultscan
beobtainedwith the one-dimensionalmodelwhen
the laminatedcompositeis replacedby an equiva-
lentisotropicmaterialwiththefollowingYoung's and
shear moduli:

Array

{z}

[k]

Two-dimensional models One-dimensional models

[:

{H}x

F-/ s Q
Qt P-[.

Mi

E = All/h (1)

G = A33/h (2)

where All and A33 are the extensional stiffness in

the x-direction and the in-plane shear stiffness used

in the classical lamination theory, and where h is

the total wall thickness (of the flange or web). This
approximation was adopted in the present study.

Finite-Element Equations

The finite-element equations for each individual
element of the two-dimensional and one-dimensional

models can be cast in the following compact form:

([K] - w2[M]) {Z} = 0 (3)

where {Z} is the vector of the element degrees of free-

dom, w is the frequency of vibration, and [k] and [_]
are the generalized stiffness and mass matrices. The

forms of {Z}, [k], and [_/] are defined in the follow-

ing table, where {H}, {X}, and {_} are the vectors of
stress-resultant (or internal force) parameters, nodal
displacements, and Lagrange multiplier parameters,
respectively; IF] is the matrix of linear flexibility co-
efficients; [S] is the strain displacement matrix; [P]
and [Q] are matrices associated with the constraint
condition and the regularization term in the func-
tional, respectively; [M] is the consistent mass ma-
trix; _ is a penalty parameter associated with the
regularization term; superscript t denotes transposi-
tion; and a dot (.) refers to a zero submatrix. The
explicit form of the arrays in the following table is
given in Noor and Andersen (1982) and Noor and
Peters (1983) for the two-dimensional models and in
Noor, Peters, and Min (1989) for the one-dimensional
models:

Sensitivity of Vibrational Response to
Variations in Lamination and Material
Parameters

The expressions for the sensitivity derivatives of

the frequency and response vectors with respect to

the lamination and material parameters ,ki of the

composite frames are given by (Nelson 1976)

OA----_= _ {z}t _ OAi -w --_-i J {Z} (4)
Elements

and

o{z} = {_} +q{z} (_)
0Ai

where {_} represents a particular solution of the

equations

o{z} _
([k] - _2[_t]) 0_i

/0[k] _20[/_] 0_2 •
- k,o)_i - o,ki _//[M]) {Z} (6)

and ci are multipliers given by

Elements

(7)
In equations (4) to (7), the eigenvectors are as-

sumed to be normalized with respect to [_/]; that
is,

{Z}t[I_l]{Z} = 1 (8)

The expressions for the total complementary
strain energy of the frame U c and its derivatives with



respectto A i are given by

and

UC 1
= -_ E {H}t[F]{H} (9)

Elements

-_i = {H} t {H}
Elements

OH_t[F]{H})+ (10)

For the purpose of obtaining analytic derivatives with

respect to some of the lamination parameters, such
as the fiber orientation angle of different layers, it

is convenient to express -'-'_ in terms of 0[v]-10_ias

follows:
O[V] ,._ O[F]- 1

= -[_l _[F] (11)

The matrix _ is evaluated using the analytical
$

derivatives of the material stiffness matrix of each

laminate (flanges and web). The material stiffness
matrix of the laminate is given in Jones (1975).

Experimental and Numerical Studies

Apparatus and Test Procedure

Specimens. Two specimens, an I-section and a

J-section frame (fig. 4), were tested in the present

study. Nominal dimensions of each cross section are

given in figure 1. Weights of the frame sections were
3.181 lb and 4.085 lb for the I and J frames, respec-

tively. The frame sections were made from AS4/5208

graphite-epoxy unidirectional tape laid up in a man-
ner that resulted in essentially uniform stiffness prop-

erties in the circumferential direction _i.e., the stiff-
ness coefficients are independent of 0). The ma-

terial properties for the individual layers are given

in figure 1. The laminate stacking sequence was

[+45/0/90]s for the I-section and [+45/0/9012s for
the J-section. Each frame section was semicircu-

lar with a diameter of 72 in. Bonded to the out-

side flange of each frame was a 16-ply [+45/0/9012s,

quasi-isotropic skin made of the same material. The
frame sections were constructed so that the skin

would extend 0.5 in. beyond each side of the bottom

flange of the frame. The nominal dimensions of the

I- and J-section frames are given in figure 1, and the

actual (measured) dimensions are given in tables 1
and 2.

Apparatus and procedure. Figure 5 is a
schematic of the experimental setup, and figure 4 is a

photograph of the setup and specimens. The ends of

the frame sections were potted in a fixture that was

bolted to a large steel-beam backstop. (See fig. 4.)

An air shaker, connected to an air compressor,
was used to excite all test specimens. Excitation was

both in plane (radially) and out of plane. For in-

plane excitation, the shaker was positioned so that

the pulses of air struck approximately normal to the
surface of the skin. For out-of-plane excitation, a

piece of Dow Chemical Co. Styrofoam was attached
to the side of the frame by double-sided adhesive

tape. Pulses of air struck the flat face of the Sty-

rofoam normal to the face. The position of the air

shaker was adjusted when the excitation was striking
on a node.

A miniature accelerometer was attached at a fixed

location to the frame sections with double-sided ad-

hesive tape. Output from the accelerometer was am-

plified and displayed along the vertical axis of an os-

cilloscope. Natural modes were determined by tuning
the excitation frequency of the air shaker to produce
a maximum acceleration of the vertical deflection on

the oscilloscope. Output als o passed through a low-

pass filter and was displayed as vibrational frequency

on a frequency counter.

A hand-held velocity probe was moved along the
frame to determine node locations and mode shapes.

The output of the probe was displayed along the
horizontal axis of the oscilloscope. The probe and

accelerometer outputs combined to create a Lissajous

pattern on the oscilloscope. A phase shift in the

Lissajous pattern occurred when the velocity probe

passed over a node.
The nodal locations were mapped manually dur-

ing the vibration survey of the frames. Consequently,

the only nodal lines monitored were those associ-

ated with gross in-plane and out-of-plane motions.

Other nodal lines, associated with localized defor-

mation patterns, were not surveyed. These localized
deformations were noticeable in some of the higher

vibration modes, with complex deformation patterns

and/or strong coupling between in-plane and out-of-

plane motions.

Finite-Element Grids

Two-dimensional models were generated for the

actual frames (test specimens) described in the pre-

ceding section and for the corresponding frames with
nominal dimensions. Herein, the frames with actual
and nominal dimensions will be referred to as the

actual and nominal frames, respectively. For the ac-

tual frames, spline interpolations were used to gener-
ate the wall thicknesses and coordinates of the nodal

points. Isoparametric finite elements were used to
approximate the variations in stiffness and geome-

try. The one-dimensional models considered herein



are for the frameswith nominaldimensions.The
grids usedfor both the one-dimensionaland two-
dimensionalmodelsaredescribedsubsequently.

Two-dimensional models. An 18 × 8 grid was

used for modeling the whole I-section frame. In this

grid, two elements were used to model each of the

web, top flange, and bottom flange sections. The

part of the skin adjacent to the bottom flange section

was treated as part of the flange. One element was
used to model each of the two parts of the skin section

that extended beyond the bottom flange. (See fig. 1.)
The middle surfaces of the top flange and the web
were taken to be their reference surfaces. The middle

surface of the combined bottom flange and skin was
taken to be the reference surface.

An 18 × 7 grid was used for modeling the whole
J-section frame. The distribution of the elements was

similar to that for the I-section frame. Only one

element was used to model the top flange section.

(See fig. 1.)

Totally clamped and partially clamped support

conditions were considered. For totally clamped

supports, all six generalized displacements were re-

strained (u_ = u 5 = w' ¢4 = ¢' '= 2 = ¢3 = 0). The
partially clamped conditions were obtained from the

totally clamped case by successively removing the re-

straints on one, as well as on combinations, of the

displacement and rotation components.

One-dimensional models. A uniform grid

of 24 elements was used in modeling each of the
I-section and J-section frames. The principal see-

torial properties of the cross section were evaluated

with the Fortran program listed in Coyette 1987.

Identification of Modes and Estimation of

Error in One-Dimensional-Model

Predictions

The two-dimensional models can be used to iden-

tify the in-plane, out-of-plane, and coupled modes

and to estimate the error in the predictions of the

one-dimensional models. These objectives can be
accomplished by decomposing the complementary

strain energy U c (eq. (9)) associated with each vi-
bration mode into three components, U1, U2, and

U3 (see table 3). The first two components, U1
and U2, are associated with the in-plane and out-

of-plane stress resultants, respectively. The third

component, U3, is associated with the stress resul-

tants that are peculiar to two-dimensional plates and

shells (not present in one-dimensional-beam models).

The in-plane and out-of-plane modes correspond to

the modes for which U1/U c and U2/U c are close to

1, respectively. The strongly coupled modes corre-

spond to nearly equal values of U1/U c and U2/U c.

6

The ratio Ua/U c is indicative of the error in the one-

dimensional-model predictions.

It is also useful to partition the total complemen-

tary strain energy associated with each mode into

three components, Ut/, Uw, and Ubf; these compo-
nents represent the contributions of the top flange,

web, and bottom flange (including the skin).

Comparison of Experimental and
Finite-Element Results

The results of the experimental and numeri-

cal studies are summarized in figures 6 to 10 and

table 4 for the I-section frame, and in figures 11 to 15

and table 5 for the J-section frame. Figures 6(a) and
ll(a) are bar charts for the experimental frequencies

and the frequencies obtained by the two-dimensional
finite-element model for the actual I-section and

J-section frames, respectively. For the finite-element

model, three cases are considered--totally clamped

edges (with both translational and rotational re-

straints), partially clamped edges with ¢2 not re-

strained, and partially clamped edges with u_ in the

flanges and ¢2 not restrained.
The maximum and minimum values of the fre-

quencies obtained by the two-dimensional finite-

element model (corresponding to the totally clamped

and partially clamped edges) are shown in fig-

ures 6(b) and ll(b), along with the experimental fre-

quencies. (See also tables 4 and 5.) The experimen-
tal frequencies associated with modes 9 and 10 of the

I-section frame, and with modes 9, 10, and 11 of the

J-section frame, respectively, are close in frequency

and have very close nodal locations. Henceforth these

modes will be referred to collectively as mode 9. Also,

the 12th mode of the I-section frame (table 4) was

missed in the experimental survey, which is indicative

of the difficulty of determining the high-frequency

modes. The nodal locations of the succeeding ex-
perimental frequency for both the I- and J-section
frames are close to those of the finite-element model.

The fact that only one of the multiple experimental

frequencies with close nodal locations is predicted by

the finite-element model may be attributed to imper-

fections in lamination and material properties and/or

to geometric nonlinearities that were not incorpo-

rated into the finite-element model. Figures 6(c)

and l l(c) are bar charts for the frequencies obtained

by two-dimensional models of the actual and nomi-
nal frames along with those of the one-dimensional
model.

Figures 7 and 12 are bar charts of the two decom-

positions of the complementary strain energies, asso-

ciated with the different vibration modes, described

in the preceding section. The ordinates in figures 7(a)

and 12(a) represent the ratios of U1/U c, U2/U c, and



Uj/U c, and the ordinates in figures 7(b) and 12(b)

represent the ratios of Utf /U c, Uw/U c, and Ubf /U c
for each of the modes.

The mode shapes associated with the first 10 fre-

quencies are shown in figures 8 and 13. Three views
are shown for the deformations associated with each

mode--side view, top view, and end view. Also
shown are the nodal lines of the w _ displacement

on the top and bottom flanges. As can be seen

in figures 8 and 13, the deformation patterns asso-
ciated with higher modes are fairly complex. As

mentioned previously, the only experimental nodal
lines monitored are those associated with gross in-

plane and gross out-of-plane motions. Generally,

good agreement between the finite-element and ex-

perimental nodal lines is observed in these cases.
Other nodal lines, associated with localized deforma-

tions, are shown only for the finite-element solutions.
The sensitivities of the vibration frequencies to

the fiber orientation angles of the top flange, web,

and bottom flange and skin are depicted in figures 9

and 14. The ordinates in figures 9 and 14 represent

the sensitivity derivatives with respect to the indi-

cated fiber angles. Each of the sensitivity derivatives

is normalized by dividing it by the corresponding fre-

quency of vibration. The sensitivities of the vibra-

tion frequencies to the material parameters EL, ET,

GLT, and GTT are shown in figures 10 and 15. The
ordinates in figures 10 and 15 represent the sensi-

tivity derivatives with respect to the indicated elas-
tic moduli. Each of the sensitivity derivatives is di-

vided by the corresponding frequency and multiplied

by the corresponding elastic modulus. The effects of

boundary conditions on the frequencies obtained by
the two-dimensional finite-element model are shown

in tables 4 and 5.

An examination of the experimental and finite-

element results (figs. 6 to 15 and tables 4 and 5)

reveals the following:

1. Reasonably good correlation is observed be-
tween numerical simulation and experiment for the

I-section frame (fig. 6(a)). The ratios of the first

five experimental frequencies to the corresponding
finite-element frequencies ranged from 0.90 to 1.00

(table 4). For the J-section frame, the correlation is
not as good (fig. ll(a)). The corresponding ratios

for the first five frequencies were from 0.86 to 1.01

(table 5).
2. Most of the experimental frequencies for the

I-section frame and the J-section frame are between

those for the totally and partially clamped supports

(with both u_ in the flanges and ¢2 not restrained),
especially for the higher modes. For some of the

modes, the experimental frequencies are closer to

the partially clamped support case (e.g., modes 5,

7, 10, 12, and 13 (fig. 11(b))). For the I- and
J-section frames, the finite-element model predicted

only one of the multiple experimental modes with
close nodal lines. The other experimental frequencies

were between those for the totally and partially

clamped supports (with both u_ in the flanges and

¢2 not restrained (figs. 6(b) and 11(b))).
3. The lowest five frequencies obtained by the

one-dimensional model are reasonably close to those

obtained by the corresponding two-dimensional

model, especially for the J-beam, where the errors

in the predictions of the one-dimensional model were
well below 10 percent. (See figs. 6(c) and 11(c).)

4. Identification of the modes as in plane or out

of plane can best be accomplished by examining the

energy components, U1/U c and U2/U c, associated
with the in-plane and out-of-plane forces, respec-

tively (figs. 7(a) and 12(a)). Also, the minimum er-
ror to be expected when using one-dimensional thin-
walled beams can be estimated by computing the

ratio of the energy associated with the forces ne-

glected in thin-walled beams to the total energy

Uj/U c. (See figs. 7(a) and 12(a).)

5. The coupling between in-plane and out-

of-plane deformations is more pronounced in the
J-section frame than in the I-section frame. For ex-

ample, the first 20 modes for the I-section frame had

either U1/U c or U2/U c >_ 0.75. On the other hand,

only modes 1 to 4, 6, 8, and 10 in the J-section

frame had U1/U c or U2/U c __ 0.75. For the higher
modes, neither U1/U c nor U2/U c was close to 1. (See

figs. 7(a) and 12(a).)
6. For the I-section frame, the contributions of

the top and bottom flanges to the total energy asso-
ciated with different modes far exceeded that of the

web. The ratio of the strain energy in the web to the

total strain energy was less than 0.20 for the first 10

modes (fig. 7(b)) and less than 0.28 for the succeeding
10 modes. For the J-section frame, the strain-energy

ratio in the web approached 0.4 in some of the modes

(fig. 12(5)).
7. For the I-section frame, the strain energy of

the top flange is the dominant energy in the in-

plane deformation modes, and the strain energy of
the bottom flange (including the skin) dominates for

the out-of-plane deformation modes. (See fig. 7(b).)

8. The vibrational response of both the I-section

and J-section frames is very sensitive to restraining

the Ul displacements of the flanges (and skin). It is
somewhat sensitive to the rotational restraint on ¢_.

(See tables 4 and 5.) However, it is less sensitive to

restraining the displacement components uS and w _

and the rotation ¢_.
9. The vibrational response of the I-section frame

and J-section frame is more sensitive to variations

7



in the 45° or -45° fiberanglesthan to variations
in the 0° or 90° fiberangles.Thevariationsin the
0° and90° fibersof thewebandthebottomflange
havea noticeableeffecton someof the modes,but
their effectisgenerallylessthanthat of the45° and
-45° fibers. (Seefigs.9 and 14.) The vibrational
responseis alsomoresensitiveto variationsin the
elasticmoduliE L and GLT than to any of the other

material coefficients. (See figs. 10 and 15.)

10. The sensitivity of the vibration frequencies

with respect to variations in both E L and GLT is al-

most the same for all the modes. (See figs. 10 and 15.)

This uniform sensitivity may be attributed to the

quasi-isotropic lamination used for both the flanges

and the web. It suggests the feasibility of replacing
the quasi-isotropic composite, in the one-dimensional

thin-walled-beam model, with an equivalent isotropic

material, as was done in the present study.

Comments on Sources of Errors and

Model Adjustment Techniques

Sources of Errors

The determination of natural frequencies and
modes from vibration tests and numerical models in-

volves numerous possible sources of discrepancies or

errors that are related to mechanical and equipment

limitations and to theoretical and physical assump-
tions. The errors in vibration tests include inexact

equipment calibration, excessive noise, manufactur-

ing variations, incorrect transducer locations, and op-
eration in a region of nonlinearity of the response.

Numerical modeling errors can be attributed to in-

accuracies in estimated material properties and to in-

sufficient modeling detail. In the present study, care

was exercised in collecting and recording the vibra-
tion test data and in the selection of the numerical

model. However, nominal material properties and

lay-ups (fiber orientation of the different layers) were

used in the numerical model. The sensitivity analysis

helped identify the material and lamination parame-
ters that need to be accurately determined.

Model Adjustment Techniques

In recent years, considerable efforts have been

directed at improving and modifying the numerical
model to obtain a better correlation with test results.

These efforts started as trial-and-error approaches

and evolved into systematic system identification

and model adjustment techniques. Although these

model adjustment techniques have not been used in

the present study, the techniques are particularly

useful for validating numerical models to be used in

simulating transient dynamic response.

Most of the model adjustment techniques are

based on using the experimental modal data ( mea-
sured eigenvalues and eigenvectors) to update the

stiffness and/or mass matrices of the structure (e.g.,

see Berman 1979; Chen 1979; Wei 1980; Berman and

Wei 1981; Baruch 1982; Grossman 1982; Berman

and Nagy 1983; Jensen and Crawley 1984; Kabe

1985; and Arruda and dos Santos 1989) and the two

monographs (Ewins 1986 and Martinez and Miller
1985). In some of the recent techniques, the sensitiv-

ity derivatives with respect to the physical parame-

ters of the numerical model are used in conjunction

with optimization algorithms to obtain corrected (or
adjusted) values of the physical parameters.

Conclusions

A detailed study is made of the effects of vari-

ations in lamination and material parameters of
thin-walled composite frames on their vibrational

characteristics. The structures considered are semi-

circular thin-walled frames with I- and J-section

frames. The flanges, web, and skin of the stiffen-

ers have quasi-isotropic laminations and the fiber

orientation is made up of combinations of +45 °,

0 °, and 90 ° layers. Two computational models are

used for predicting the vibrational characteristics. In

the first model, the flanges and webs of the stiff-

eners are modeled by using two-dimensional shell
(and plate) finite elements. The second model is a
finite-element discretization of the one-dimensional

Vlasov-type thin-walled-beam theory. A mixed for-
mulation is used with the fundamental unknowns

consisting of both the generalized displacements and

stress resultants (or internal forces) in the frame.

The frequencies and modes predicted by the compu-

tational models are compared with those obtained

from experiments. A detailed study is made of
the sensitivity of the vibration response to vari-

ations in the fiber orientation, material proper-

ties of the individual layers, and boundary condi-

tions. On the basis of this study, the following

conclusions are justified:

1. For some of the higher vibration modes, the
experimental frequencies for thin-walled frames are

generally between those for the totally and partially
clamped supports.

2. Identification of the modes as in plane or out

of plane can best be accomplished by examining the

energy components associated with the in-plane and

out-of-plane forces. Also, the minimum error to

be expected when using one-dimensional thin-walled

beams can be estimated by computing the ratio of

the energy associated with the forces neglected in

thin-walled beams to the total energy.



3. For quasi-isotropiccompositeframes,the vi-
brationfrequencies,associatedwith thelowermodes,
can be accuratelypredictedby an isotropicone-
dimensional-beammodel(witheffectiveelasticmod-
uli). Theaccuracyofpredictionsisdependentonthe
cross-sectionaldistortionsduringthebeamdeforma-
tions.Asthecross-sectionaldistortionsincrease,the
degradationof accuracybecomesmorepronounced.

4. The vibrational response of thin-walled semi-

circular frames is very sensitive to restraining the

u_ displacement component of the flanges along the
length of the frame. It is somewhat sensitive to

the restraint on the associated rotation component.

However, it is less sensitive to restraining the other

displacement and rotation components.

5. The vibrational response of thin-walled com-

posite frames with quasi-isotropic laminations is
more sensitive to variations in the +45 ° or -45 ° fiber

angles than to variations in the 0° or 90 ° fiber angles.

Variations in the 0° and 90 ° fibers of the web and the

bottom flange have a noticeable effect on some of the

modes, but their effect is generally less than that of
the 45 ° and -45 ° fibers. The vibrational response is
also more sensitive to variations in the material co-

efficients E L and GLT than to all other coefficients.

6. The sensitivity of the vibration frequencies

with respect to variations in the elastic moduli E L

and GLT is almost the same for all the modes be-

cause of the quasi-isotropic lamination used for both

the flanges and the web. It suggests the feasibility

of replacing the quasi-isotropic composite with an

equivalent isotropic material in the one-dimensional
thin-walled-beam analysis, as was done in the present

study.

NASA Langley Research Center
Hampton, VA 23665-5225
September 4, 1990



Appendix

Fundamental Equations of

Thin-Walled-Beam Theory Used in

Present Study

The fundamental equations of the linear, Vlasov-
type theory of curved thin-walled beams are given in
this appendix. A right-handed orthogonal coordinate
system is used with the x-axis passing through the
centroids of the cross sections. (See fig. 3.) The beam
is assumed to be curved in one direction only (in the
xz-plane).

Displacement Assumptions

Based on the assumption that the projection of
each cross section on a plane normal to the initial
centroidal axes does not distort during deformation,
the displacement field in the plane of the cross section
(yz-plane) is represented by

v(z,y,z) = v°
w(x, y, z) w0

(°°}z :]
Y ¢o

(A1)

where u °, v°, and w ° are the axial and transverse

displacement components at y -- z = 0; ¢0 Cy0,and

¢0 are the rotation components about the coordinate
axes; 0° is the rate of twist of the beam; and _ is

the sectorial coordinate (warping of the cross section
for a unit rate of twist). The seven generalized

displacement parameters u 0, v0, w0, ¢0, ¢0, 00, and

00 are functions of x only.

Strain Assumptions

The following expressions are used for the three
nonzero components of the strain field in the plane
of the cross section:

Gx= G° - _o +zn0_ _o 1
_y =roy- zn0
_xz= _°z+ yn°

(A2)

where G° is the extensional strain of the centerline,

n°y and n 0 are the curvature changes in the y- and

10

0 and 70 z arez-directions, n0 is the twist, and _/xy
the transverse shear strains. The strain parameters

G0 0 n0, 0 0 _0x, ny, "/xz, "/xy, n O and are functions
of x only and can be expressed in terms of the
displacement and rotation components as follows:

w0o Ouocx = +
R

no- oso+ s°
R

no=oso
_o = ovo_ so

,,/0z -- u 0
R + Ow° + s°

no=os° + _o
R

_o = 000

(A3)

where 0 - d/dx and R is the radius of curvature
of the centerline of the beam. Also, the following
constraint condition is used to relate 0o and ¢°x:

0¢ ° - 0° -- 0 (A4)

Constitutive Relations

The relations betwen the internal forces and the

strain components are given by

(1/= ax z_ dA

B_

=E Iz -/_z

Symm

G0

no

no

. k00 .

(A5)

and

zi]
= G Az 70z

no

(A6)



where A is the cross-sectional area; Iy, Iz, and Iyz
are the second moments of the cross section (mo-

ments and product of inertia); J is the Saint-Venant

torsion constant; I_ is the principal second secto-

rial moment of the cross section (sectorial moment

of inertia); E and G are the effective Young's and
shear moduli of the material; Nx is the axial force;

My and Mz are the bending moments; Bw is the

bimoment; Qy and Qz are the transverse shearing
forces; and Mt is the twisting moment. The defini-
tion of the sectorial properties of the cross section is

given in Vlasov (1961), Zbirohowski-Ko_cia (1967),

and Gjelsvik (1981).

Variational Functional

The functional used in the element development

is given by

f0 _- 0 1 f0_(_)27r= TrHR+ A(oqq_x-0 0) dx- _ dx (A7)

where A is the Lagrange multiplier, E is a penalty

parameter, l is the length of the element, and 7rHR

is the functional of the Hellinger-Reissner mixed

variational principle. The expression for 7rHR is

j_0lnHR = (V - U c + K) dx (A8)

where

U C

o

tt_Oy t _/xy

V = My _ ' + "/Oz

B_o no _ °t

• q20 .

1 MN: Iz - Iy z

= 2--E My j iy
Bw k Symm

Q_ _ 1
+ _ 5ft Symm j

P { [(uo)2+K= _w 2 A (v0) 2+(w0) 2]

+ (I_ + I_)(,°x)2 + I_(_°) 2

Zz(¢z0)2 o o- 2tyz%¢z + r_o(o°)2+
)

(A9)

-1

My
B_

(AIO)

(All)

where p is the mass density of the material. In

equations (A5) to (All), y and z are centroidal
coordinates. (See fig. 3.) A Fortran program for

evaluating the principal sectorial properties is listed

by Coyette (1987).
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Table 1. Measured Thicknesses and Dimensions for I-Section Frame

O, deg

2

lO
20 !

t

30 I

40 I

50 I

60 I

70 I

80

90 i

100 I

110 ]

120 I

130 I

140 I

150 I

160 I

170 I

178 I

hi, in.

0.046

.041

.042

.041

.043

.045

.044

.043

.045

.051

.046

.045

.044

.045

.045

.044

.043

.043

.042

h2, in.

0.042

.042

.043

.043

.044

.046

.045

.044

.044

.049

.045

.047

.047

.045

.044

.043

.043

.042

.0441
i

h3, in. h4, in. In_, an. h6' in.

0.051 0.133 10.139 0.089
.046 .119 : .125 .078

.039 .127 .130 .084

.041 .127 .126 .085

.041 .121 .119 .080

.046 .120 .116 .081

.049 .124 .127 .085

.055 .124 .131 .080

.056 .125 .122 .085

.050 .128 .129 .088

.040 .119 .118 .083

.039 .121 .122 .081

.040 .118 .i20 .083

.041 .118 .122 .083

.042 .120 .124 .082

.041 .120 .120 .085

.040 •123 .125 .086

.052 .120 .117 .085

.048 .136 .141 .093

h7, in. bl, in. b2, in.

0.092 0.712 0.635

.086 .800 .633

.092 .800 .653

.091 .773 .680

.082 .775 .685

.081 .780 .675

.088 .795 .685

.093 .825 .680

.086 .825 .650

.091 .850 .645

•080 .830 .645

•081 .840 .635
•079 .800 .670

•078 .755 .690

•079 .730 .725

•079 .730 .708

•082 .710 .712
.077 .700 .728

•096 .692 .700

b3, in. ib4, in. Idl, in.
1.790 '1.625 !0.785

1.795

1•775

1.780

1.780

1.770

1.790

1.775

1.767

1.780

1.800

1.790

1.770

1.765

1.770
1.785

1.810
1.795

1.810

1.670 .785

1.670 .8OO

1.680 .800

1.687 .815

1.685 .820

1.690 .820

1.680 .825

1.687 .815

1.660 .828

1.675 .812

1.690 .810

1.687 .810

1.705 .810

1.675 .805

1.670 .805

1.655 .800

1.655 .807

1.650 .800__.

d2, in.

0.770

.785

.800

.810

.810

.810

.815

.810

.810

.790

.800

.790

.780

.790

.795

•785

.808

.785

.785

h 1 h2

d 1 _ b 1 b 2 -_ d 2

. i. ,
!

h
7
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Table2. MeasuredThicknessesandDimensionsfor J-SectionFrame

0, deg !

I I I

10 I

20 I

30 I

4{} I

50 I

60 I

7fl I

80

90

100

110

120

130

140

150

160

170

180

hl, in.

0.094

.095

.094

.086

.087

.086

.091

.090

.090

.090

.100

.090

.090

.090

.088

.087

.093

.086

.091

h2, in.

0.087

.086

.082

.084

.081

.082

.085

.088

.087

.087

.081

.081

.082

.083

.084

.082

.081

.085

.091

h3, in.

0.175

.168

.168

.166

.165

.168

.162

.167

.165

.178

.172

.167

.167

.173

.175

.168

.174

.173

.185

h4, in.

0.174

.165

.174

.165

.165

.168

.166

.168

.165

.174

.167

.178

.168

.161

.165

.171

.174

.165

.171

h5, in.

0.090

.091

.087

.086

.086

.091

.084

.086

.085

.091

.085

.085

.085

.086

.088

.085

.087

.088

.093

h6, in.

0.090

.O84

.085

.085

.082

.084

.081

.084

.079

.086

.087

.095

.088

.083

.083

.086

.087

.086

.087

3:518 [-0_77_ J

3.526 I

3.522
3.520

3.530 I
3.502
3.507

3.510
3.491

3.457 I

3.464 I

3.473 I

3.472 I

3.460 I

3.473 I

3.480

3.472

3.527

3.476

b2, in.

1.166

.784 1.191

.754 I 1.299

.724 tl.289.722 1.266

.728 1.272

.721 1.250

.735 1.258

.739 1.236

.750 1.281

.768 1.308

.753 1.273

.767 1.244

.762 1.256

.761 1.254

.750 1.253

.776 1.238

.715 i 1.231

.664 1.2201

b3, in.

1.260
1.240

1.239

1.264

1.215

1.217

1.183

1.257

1.241

1.240

1.277

1.303

1.263

1.253

1.250

1.260

1.283

1.283

1.282

_I, m. I

.7421

.7551

.7581

.7561

.7661

_776 I

.781 _

.770

.782

.759

.747

.757

.738

.743

.758

.731

.716

h 5

I

-[-

L
d

h 1

Y
I

_-- b 1------_

h
t 3

I

h 4 h6

b2
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Table3. Decompositionof TotalComplementaryStrainEnergyInto Components

IVc = u1 + u2 + u3]

Energy

components
u1

u2

u3

Associated stress resultants

(see fig. 2)

Web

N1, N12

M1, M12, Q1

N2, M2, Q2

Flanges and skin

N1, M1, Q1

N12, M12

N2, M2, Q2

Comments

In-plane response quantities

Out-of-plane response quantities

Response quantities neglected in
one-dimensional model
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Table 4. Effect of Boundary Conditions on Frequencies Obtained by Two-Dimensional
Finite-Element Model for I-Section Frame

Numbers in parentheses refer to ratios of partially clamped ]to totally clamped model frequencies J

Mode

Frequencies
of totally
clamped
model,

Hz

9.201

31.86

37.52

73.85

81.34

9

10

11

12

13

133.9

149.2

203.3

226.5

281.9

320.6

349.8

419.1

Frequencies of partially clamped model
(with the following generalized

displacements unrestrained), Hz

4
9.001

(0.978)

31.06

(0.975)

37.37

(0.996)

71.82

(0.973)

81.03

(0.996)

130.1

(0.972)

148.6

(0.996)

198.1

(0.974)

225.6

(0.996)

275.2

(0.976)

319.3

(0.996)

342.3

(0.979)

412.6

(0.985)

¢_ and ¢_
9.001

(0.978)

31.06

(0.975)

37.37

(0.996)

71.81

(0.972)

81.03

(0.996)

130.1

(0.972)

148.6

(0.996)

198.1

(0.974)

225.6

(0.996)

275.2

(0.976)

319.3

(0.996)

342.3

(0.979)

412.6

(0.985)

at in
flanges

6.788

(0.738)

18.11

(0.568)

34.17

(0.911)

38.09

(0.516)

74.30

(0.913)

75.56

(0.564)

129.6

(0.869)

139.8

(0.688)

199.3

(0.880)

214.2

(0.760)

268.0

(0.836)

305.1

(0.872)

343.0

(0.819)

u] in flanges
and ¢_

6.632

(0.721)

17.87

(0.561)

33.36

(0.889)

37.69

(0.510)

73.44

(0.903)

74.14

(0.554)

128.1

(0.858)

137.4

(0.676)

196.9

(0.870)

210.9

(0.748)

264.9

(0.826)

300.7

(0.860)

339.0

(0.809)

Experimental
frequencies,

Hz

9.2

29.7

35.9

66.6

78.1

119.0

145.0

193.0

216.0
223.0

260.0

309.0

(Missed)

401.0
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Table 5. Effect of Boundary Conditions on Frequencies Obtained by Two-Dimensional
Finite-Element Model for J-Section Frame

Numbers in parentheses refer to ratios of partially clamped ]to totally clamped model frequencies J

Mode

I0

II

12

13

Frequencies

of totally
clamped

model,
Hz

11.53

36.87

39.81

79.22

91.41

143.9

168.1

214.1

263.0

297.6

368.2

382.8

468.2

11.24

(0.975)

36.64

(0.994)

38.80

(0.975)

78.99

(0.997)

88.81

(0.972)

143.5

(0.997)

163.6

(0.973)

213.4

(0.997)

256.9

(0.977)

296.2

(0.995)

361.2

(0.981)

380.3

(0.993)

462.0

(0.987)

Frequencies of partially clamped model

(with the following generalized

displacements unrestrained), Hz

¢_ and ¢_
11.24

(0.975)

36.64

(0.994)

38.79

(0.974)

78.99

(0.997)

88.78

(0.971)

143.5

(0.997)

163.5

(0.973)

213.4

(0.997)

256.8

(0.976)

296.2

(0.995)

361.1

(0.981)

380.3

(0.993)

461.9

(0.987)

in
flanges

8.488

(0.736)

22.41

(0.608)

32.77

(0.823)

48.32

(0.610)

72.64

(0.795)

96.58

(0.671)

134.4

(0.800)

167.2

(0.781)

206.5

(0.785)

251.5

(0.845)

298.7

(0.811)

336.7

(0.880)

402.4

(0.859)

u_ in flanges

and ¢_
8.408

(0.729)

22.37

(0.607)

32.18

(0.808)

47.94

(0.605)

71.68

(0.784)

95.35

(0.663)

132.9

(0.790)

165.0

(0.777)

204.3

(0.770)

248.3

(0.834)

295.5

(0.803)

332.8

(0.869)

398.0

(0.850)

Experimental

frequencies,
Hz

11.6

32.1

37.0

69.0

79.0

126.0

145.0

191.0

221.0
229.0

247.0

266.0

339.0

347.0

403.0
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; ..4 , _.

j u2
_2"

Generalized displacements
referred to global coordinates

U2_w ul N2_ N1

Q1

u2__1 /__ "N1
N2_::_N 12

__2 _"_ M12 -__ ____ _'wM12

, M2 , t °2 TM2
Flanges and skin Web M21

Figure 2. Sign convention for generalized displacements and stress resultants in two-dimensional model.

Z v Qy
zs

y x

Figure 3. Sign convention for generalized displacements and stress resultants in one-dimensional model.
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Figure 4. Thin-walled semicircular graphite-epoxy specimens and equipment.
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Frame section

Air shaker---1 _ ,E-- Amplifier _, Oscilloscope

_. .. _!!f_

Frequency counter J

Figure 5. Schematic of test apparatus.
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Actual model with ¢2 unrestrained

Experiments

r----I Actual model with u 1 in flanges and 4_2 unrestrained

I cross section

2 3 4 5 6 7 8 9 10 11

Mode

(a) Results for experimental and two-dimensional model.
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Frequency,
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100
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.... u 1 in flanges and e2 unrestrained model
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i I I
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i I

-- 1 I tJIr

0 5 10

Mode

(b) Results for experimental and bounding two-dimensional model.

Figure 6. Comparison of finite-element and experimental frequencies for thin-walled composite frame with

I cross section.
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I cross section
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(c) Results for two-dimensional and one-dimensional-beam model.

Figure 6. Concluded.
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Energy
ratio

4 5
6 7 8 9

Mode

(a) UI, U2 ' and U3.

10 11 12 13
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Energy
ratio

.4
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Cb) ut:, u,:, ,_nd ub:.

Figure 7. Energy components in different vibration modes of thin-walled composite frame with I cross
section.
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(a) Top flange.
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Mode

(b) Web.

Figure 9. Sensitivity of vibration frequencies to variations and fiber orientation of flanges and web for

thin-walled composite frame with I cross section.
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Figure 9. Concluded.
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Figure 10. Sensitivity of vibration frequencies to variations in material characteristics of thin-walled

composite frames with I cross section.
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(a) Results for experimental and two-dimensional model.
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(b) Results for experimental and bounding two-dimensional model.

Figure 11. Comparison of finite-element and experimental frequencies for thin-walled composite frame

with J cross section.
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(c) Results for two-dimensional and one-dimensional-beam model.

Figure 11. Concluded.
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Figure 12. Energy components in different vibration modes of thin-walled composite frame with J cross

section.
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Figure 14. Sensitivity of vibration frequencies to variations and fiber orientation of flanges and web for

thin-walled composite frame with J cross section.
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Figure 15. Sensitivity of vibration frequencies to variations in material characteristics of thin-walled

composite frames with J cross section.

38



Report Documentation Page
National Aeronaul*C5 and

Space Administration

1. Report No. 2. Government Accession No.

NASA TP-3010

4. Title and Subtitle

Free Vibrations of Thin-Walled Semicircular Graphite-Epoxy

3. Recipient's Catalog No.

5. Report Date

November 1990
Composite Frames

7. Author(s)

Ahmed K. Noor, Huey D. Carden, and Jeanne M. Peters

9. Performing Organization Name and Address

NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

6. Performing Organization Code

8. Performing Organization Report No.

L-16726

10. Work Unit No.

505-63-01-11

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Paper

14. Sponsoring Agency Code

15. Supplementary Notes

Ahmed K. Noor and Jeanne M. Peters: The George Washington University, Joint Institute for

Advancement of Flight Sciences, Langley Research Center, Hampton, Virginia.
Huey D. Carden: Langley Research Center, Hampton, Virginia.

16, Abstract

A detailed study is made of the effects of variations in lamination and material parameters of
thin-walled composite frames on their vibrational characteristics. The structures considered are

semicircular thin-walled frames with I and J sections. The flanges and webs of the frames

are modeled by using two-dimensional shell and plate finite elements. A mixed formulation is

used with the fundamental unknowns consisting of both the generalized displacements and stress

resultants in the frame. The frequencies and modes predicted by the two-dimensional finite-

element model are compared with those obtained from experiments, as well as with the predictions

of a one-dimensional, thin-walled-beam, finite-element model. A detailed study is made of the

sensitivity of the vibrational response to variations in the fiber orientation, material properties of

the individual layers, and boundary conditions.

17. Key Words (Suggested by Authors(s))

Composite-frame vibrations

Experimental and analytical vibrations

Composite structures and vibrations

Composite analysis

19. Security Classif. (of this report)

Unclassified

NASA FORM 1626 OCT 86

118. Distribution Statement

Unclassified Unlimited

Subject Category 39

] 20. Security Classif. (of this page)Unclassified 21" N°" °f Pages 122" Price41 A03

NASA-Langley, 1990

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171




